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We extend the normal form method to study the asymptotic solutions of strongly
non-linear oscillators ü+v2u= f(u, u̇), where f(u, u̇) contains only linear and cubic
non-linear terms. The novel contribution is the ansatz u= j+ j�, u̇=iv1(j− j�) where v1

is to be determined, allowing for the change of the fundamental frequency during the course
of vibration, rather than using u= j+ j�, u̇=iv(j− j�) as suggested by Nayfeh. With the
present method, not only the stability of the periodic solutions but also the asymptotic
expressions for the periodic solutions can be obtained easily. The results obtained by the
method presented coincide very well with the results obtained by numerical integration for
the Duffing–van der Pol oscillator with f(u, u̇)= m(1− u2)u̇− bu3. When v= m= b=1,
Nayfeh’s method gives qualitatively different results from the numerical integration while
our method works well even when v=1, m= b=3, since Nayfeh’s method is based on
weak non-linearities and v=1, m= b=3 is beyond the valid range of assumption.
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1. INTRODUCTION

The concept of using co-ordinate transformations to simplify ordinary differential
equations has been widely used for a long time. The normal form method is a powerful
method to simplify the governing ordinary differential equations. The basic idea of the
normal form theory, which was developed to study non-linear vibration problems, is to
transform a set of ordinary differential equations into a simpler one by carrying out a
formal series transformation; the simplest possible equations are called normal forms. The
normal form equations can be solved much more easily than the originals. In recent years,
Jezequel [2], Nayfeh [3], and Leung and Zhang [4] have studied weakly non-linear vibration
problems by normal form theory. The degenerated and non-degenerated oscillations of
autonomous, non-autonomous and parametrically excited systems were studied. Leung
and Ge [5] developed a computational method for finding higher order normal forms and
gave explicit formulae for Hopf bifurcation analysis. Here the normal form method is
extended to study the asymptotic solutions of the strongly non-linear oscillator
ü+v2u= f(u, u̇), where f(u, u̇) contains only linear and cubic non-linear terms. The novel
contribution is to express u= j+ j�, u̇=iv1(j− j�) where v1 is to be determined rather
than using u= j+ j�, u̇=iv(j− j�) as suggested by Nayfeh. With the present method, not
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only the stability of the periodic solutions but also the asymptotic expressions for the
periodic solutions can be obtained easily. The results obtained by the presented method
coincide very well with the results obtained by numerical integration for the Duffing–van
der Pol oscillator with f(u, u̇)= m(1− u2)u̇− bu3. When v= m= b=1, Nayfeh’s method
gives qualitatively different results from the numerical integration while our method works
well even when v=1, m= b=3v=1, m= b=3, since Nayfeh’s method is based on
weak non-linearities and v=1, m= b=3 is beyond the valid range of assumption.

2. NORMAL FORM FOR STRONGLY NON-LINEAR SYSTEMS

Consider the following second-order non-linear ordinary differential equation,

ü+v2u= f(u, u̇), (1)

where f(u, u̇) contains only linear and cubic non-linear terms. To study the above equation
by the complex normal form method, equation (1) is transformed into a differential
equation of the first order by complexification in terms of the complex unknown j. Let

u= j+ j�, u̇=iv1(j− j�), (2)

where v1 is an unknown frequency to be determined. Here v1 is chosen as the unknown
fundamental frequency rather than v, as assumed by Nayfeh in reference [3], allowing for
the change of the fundamental frequency during the course of vibration. Solving equations
(2), one obtains

j=
1
2 0u−

i
v1

u̇1 and j�=
1
2 0u+

i
v1

u̇1. (3)

Differentiating equation (3) with respect to t, gives

j� =
1
2 0u̇−

i
v1

ü1=
1
2 0u̇+

iv2

v1
u−

i
v1

f1, (4)

which, upon using equations (1) and (2), becomes

j� =
1
2 0u̇+

iv2

v1
u−

i
v1

f1 (5a)

j� =iv1j+
iv1

2 0v2

v2
1
−11(j+ j�)−

i
2v1

f. (5b)

In order to simplify equation (5), introduce a non-linear transformation from j to h in
the form [1, 4, 6, 7],

j= h+ h(h, h̄), (6)

where h is another complex unknown function of time and h is an odd function to be
determined to make the governing equation of h as simple as possible. Substituting
equation (6) into equation (5), gives

ḣ=iv1h+iv1h−
1h
1h

ḣ−
1h
1h̄

h̄�−
i

2v1
f+

iv1

2 0v2

v2
1
−11(h+ h+ h̄+ h�). (7)
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Because equations (5) involve only linear and third-degree terms, h can be expressed as

h=D1h+D2h�+L1h
3 +L2h

2h̄+L3h̄h2 +L4h̄
3. (8)

There are six constants to be determined to fix h. Substituting equation (8) into equation
(7), yields a new equation for h. Then the new equation is simplified according to normal
form theory. ḣ has six terms with two resonance terms; u also has six terms with two
resonance terms. Eliminating the four non-resonance terms of ḣ for the simplest possible
form and the two resonance terms of u for non-secular solution, gives six equations for
the six unknowns in equation (8). Finally, by putting h in polar form, produces one
complex equation for the two real unknowns of amplitude a and v1 using the steady state
condition ȧ=0.

In the next section, equations (1) to (8) are applied to a Duffing–van der Pol oscillator.

3. DUFFING–VAN DER POL OSCILLATOR

Consider the Duffing–van der Pol oscillator given by equation (1) with
f(u, u̇)= m(1− u2)u̇− bu3, mq 0 and bq 0 for the existence of a stable limit cycle.
Substituting equation (8) into equation (7), gives

ḣ=
1

2v1
(iv2 + iD1v

2 + iD�2v
2 + mv1 +D1mv1 −D�2mv1 + iv2

1 − iD1v
2
1 − iD�2v

2
1)h

+
i

2v1
(v2 +D�1v

2 +D2v
2 + imv1 + iD�1mv1 − iD2mv1 −v2

1 −D�1v
2
1 +3D2v

2
1)h̄

+
i

2v1
(b+L1v

2 +L�4v
2 + imv1 − iL1mv1 + iL�4mv1 −5L1v

2
1 −L�4v

2
1)h3

+
i

2v1
(3b+L2v

2 +L�3v
2 + imv1 − iL2mv1 + iL�3mv1 −L2v

2
1 −L�3v

2
1)h2h̄

+
1

2v1
(3ib+iL�2v

2 + iL3v
2 + mv1 −L�2mv1 +L3mv1 − iL�2v

2
1 +3iL3v

2
1)hh̄2

+
1

2v1
(ib+iL�1v

2 + iL4v
2 + mv1 −L�1mv1 +L4mv1 − iL�1v

2
1 +7iL4v

2
1)h̄3. (9)

Equation (9) is not exact and is only valid up to third order in h. If ḣ0 0, there are six
equations for the six unknown constants of equation (8). However, this is not possible due
to the existence of resonance terms. Terms proportional to h, h2h̄ are resonance terms and
hence cannot be eliminated from equation (9), and all the rest should be eliminated [3, 6].
This produces the following four equations.

h̄: v2 +D�1v
2 +D2v

2 + imv1 + iD�1mv1 − iD2mv1 −v2
1 −D�1v

2
1 +3D2v

2
1 =0, (10a)

h3: b+L1v
2 +L�4v

2 + imv1 − iL1mv1 + iL�4mv1 −5L1v
2
1 −L�4v

2
1 =0, (10b)

hh̄2: 3ib+iL�2v
2 + iL3v

2 + mv1 −L�2mv1 −L3mv1 + iL�2v
2
1 +3iL3v

2
1 =0, (10c)

h̄3: ib+iL�1v
2 + iL4v

2 + mv1 −L�1mv1 +L4mv1 − iL�1v
2
1 +7iL4v

2
1 =0. (10d)

Two additional equations are obtained by eliminating the secular terms h, h2h̄ of u by
substituting equations (8) and (6) into the first of equations (2),

u= h+ h̄+(D1 +D�2)h+(D�1 +D2)h�+(L1 +L�4)h3 + (L2 +L�3)h2h̄

+ (L�2 +L3)h̄h2 + (L�1 +L4)h̄3. (11)
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The following conditions should be satisfied in order to eliminate the secular terms h, h2h̄

of u in equation (11),

D1 =−D�2, L2 =−L�3. (12)

Taking the conjugate of the left side of equation (10b), multiplying by i and subtracting
equation (10d), gives

L�1 =−2L4. (13)

Substituting equations (12) and (13) into equations (10), one gets

D1 =
−(iv2 + mv1 − iv2

1)
2(−mv1 +2iv2

1)
, D2 =

−(iv2 − mv1 − iv2
1)

2(mv1 +2iv2
1)

,

L1 =
2(−ib+ mv1)

(iv2 +3mv1 −9iv2
1)

, L2 =
(−3ib+ mv1)
2(mv1 −2iv2

1)
, (14)

L3 =
−(3ib+ mv1)
2(mv1 +2iv2

1)
, L4 =−

ib+ mv1

−iv2 +3mv1 +9iv2
1
.

With these choices, equation (9) has the simplest form which contains the resonance terms
only and is readily solvable:

ḣ=
i(v2 +v2

1)
im+2v1

h+
3ib− mv1

im+2v1
h2h̄. (15)

Equation (11) has the simplest form up to the third degree,

u= h+ h̄+ 1
2L1h

3 −L4h̄
3. (16)

That is, in view of equation (13),

u= h+ h̄−Re (L4)(h3 + h̄3)− Im (L4)(h3 − h̄3)/i. (17)

Expressing h in polar form

h= 1
2a eiv1t (18)

gives an equation for v1 using the steady state condition ȧ=0.
Substituting the polar form (18) into equation (15), produces

iv1h+
ȧ
a

h=
i(v2 +v2

1)
im+2v1

h+
3ib− mv1

im+2v1
h

a2

4
. (19)

Multiplying both sides of equation (19) with im+2v1 and eliminating h, gives

0iv1 +
ȧ
a1(im+2v1)= i(v2 +v2

1)+ (3ib− mv1)
a2

4
. (20)

Separating the real and imaginary parts in the above equation gives

−v1m+2
ȧ
a

v1 =−mv1
a2

4
, (21)

2v2
1 +

ȧ
a

m=(v2 +v2
1)+3b

a2

4
. (22)
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Solving equation (21), gives

ȧ=
m

2
a(1− 1

4a
2). (23)

To obtain the steady-state periodic solution, let ȧ=0 in equation (23). Then

a=2. (24)

Substituting a=2 into equation (22), gives

v2
1 =v2 +3b. (25)

The stability of the solution is now checked. Since ȧ is greater than zero for aQ 2, and
ȧ is less than zero for aq 0 in equation (23), then, aq 2 is a stable solution.

Substituting equation (18) into equation (17) with equations (24) and (25), one gets

6u=2 cos (v1t)+A[B1 cos (3v1t)+B2 sin (3v1t)]

v2
1 =v2 +3b

, (26)

where

A=2/(v4 +9m2v2
1 −18v2v2

1 +81v4
1),

B1 =−bv2 +9bv2
1 +3m2v2

1,

B2 =3bmv1 +1mv2v1 −9mv3
1.

The steady-state solution of the Duffing–van der Pol oscillator according to the method
proposed by Nayfeh [3] is,

g
G

G

F

f

u=2 cos (v*1 t)+
b

4v2 cos (3v*1 t)−
m

4v
sin (3v*1 t),

v*1 =v+
3b

2v
.

(27)

Equations (27) were obtained as follows. Comparing equation (1) with equation (1.53)
in Nayfeh’s book [3] (p. 20), gives

om= m, oa1 =−b, oa2 =−m, a3 = a4 =0.

These values were substituted into equations (1.63), (1.64) and (1.65) from Nayfeh’s book.
Note that it should be v rather than v0 in equation (1.65). Let a=0 in equation (1.64)
and substitute a=2 into equations (1.63) and (1.65), produces equations (27).

If f=−2n du/dt then equations (21) and (22) are respectively,

v12n+2
ȧ
a

v1 =0 and 2v2
1 −

ȧ
a

2n=v2 +v2
1.

According to equation (21), one gets a=A e−nt. According to equations (22) and (21),

v2
1 =v2 −2n2,

one gets the exact solution

u=A e−nt sin (v1t+ a),

where v1 =zv2 − n2.
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Figure 1. Limit cycles constructed using numerical integration w1 , the present w2 and Nayfeh’s w3 methods.
(a) v= b=5, m=1; (b) v= b=2, m=1; (c) v= m=1, b=0; (d) v= m=1 b=0·5; (e) v= b=1, m=1;
(f) v= b=1, m=3; (g) v= m=1, b=3; (h) v=1, b= m=3.
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T 1

Comparison of the resulting periods (s)

Case Numerical Present Nayfeh’s

a 1·006 0·993 0·967
b 2·060 1·987 1·795
c 6·690 6·283 6·283
d 4·170 3·974 3·590
e 3·320 3·142 2·513
f 3·690 3·142 2·513
g 2·120 1·987 1·142
h 2·220 1·987 1·142

The phase portraits of a limit circle are shown in Figure 1 for different parameters. Line
w1 shows the results obtained by numerical integration, line w2 shows the results
obtained by the present method, and line w3 shows the results obtained using Nayfeh’s
[3] method. In carrying out numerical integration for the steady state solution, the initial
conditions u=2 and du/dt=0 were chosen and all solution points before reaching a
steady state were disregarded. The diagrams in Figure 1 are arranged in the order of
increasing values of the non-linear parameters. For weakly non-linear vibration shown in
Figures 1(a)–(d), for the cases (a) v= b=5, m=1, (b) v= b=2, m=1, (c) v= m=1,
b=0, and (d) v= m=1, b=0·5, the results obtained by the present and Nayfeh’s [3]
methods coincide well with the results obtained using numerical integration. For
increasingly strong non-linear vibration shown in Figures 1(c)–(h) for the cases (e)
v= b=1, m=1, (f ) v= b=1, m=3, (g) v= m=1, b=3, and (h) v=1, m= b=3,
the results obtained by Nayfeh’s method [3] are quite different from the results obtained
by numerical integration, even the topological structures are different. The respective
periods are tabulated in Table 1. Therefore, the method proposed by Nayfeh is not suitable
for studying strongly non-linear vibration problems because it is based on the assumption
of weak non-linearities. The results obtained by our method coincide quite well with the
results obtained by numerical integration even when the non-linear terms are quite strong.

4. CONCLUSION

An efficient and simple method for studying autonomous strongly non-linear vibration
systems is proposed. Only simple algebraic computations are needed to calculate the steady
state periodic solution for a given system. With the present method, not only the stability
of the periodic solutions but also the asymptotic expressions for the periodic solutions can
be easily obtained. The results obtained by the presented method coincide quite well with
the results obtained using numerical integration even when the non-linear terms are quite
strong. The presented method is to be developed further in order to study strongly
non-linear non-autonomous vibration systems and strongly non-linear multiple-degree-of-
freedom vibration systems.
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